A 3D image analysis tool for SPECT imaging
نویسندگان
چکیده
We have developed semi-automated and fully-automated tools for the analysis of 3D single-photon emission computed tomography (SPECT) images. The focus is on the efficient boundary delineation of complex 3D structures that enables accurate measurement of their structural and physiologic properties. We employ intensity based thresholding algorithms for interactive and semi-automated analysis. We also explore fuzzy-connectedness concepts for fully automating the segmentation process. We apply the proposed tools to SPECT image data capturing variation of gastric accommodation and emptying. These image analysis tools were developed within the framework of a noninvasive scintigraphic test to measure simultaneously both gastric emptying and gastric volume after ingestion of a solid or a liquid meal. The clinical focus of the particular analysis was to probe associations between gastric accommodation/emptying and functional dyspepsia. Employing the proposed tools, we outline effectively the complex three dimensional gastric boundaries shown in the 3D SPECT images. We also perform accurate volume calculations in order to quantitatively assess the gastric mass variation. This analysis was performed both with the semi-automated and fully-automated tools. The results were validated against manual segmentation performed by a human expert. We believe that the development of an automated segmentation tool for SPECT imaging of the gastric volume variability will allow for other new applications of SPECT imaging where there is a need to evaluate complex organ function or tumor masses.
منابع مشابه
A New Approach for Quantitative Evaluation of Reconstruction Algorithms in SPECT
ABTRACT Background: In nuclear medicine, phantoms are mainly used to evaluate the overall performance of the imaging systems and practically there is no phantom exclusively designed for the evaluation of the software performance. In this study the Hoffman brain phantom was used for quantitative evaluation of reconstruction techniques. The phantom is modified to acquire t...
متن کاملSimulation and patient studies of scatter correction in cardiac SPECT imaging
Introduction: Myocardial perfusion imaging is a nuclear medicine imaging method that is used to detect coronary artery diseases. One of the main sources of error in this imaging method is the detection of Compton scattered photons in the photopeak energy window used for data acquisition. This results in the degradation of the image contrast, and therefore decreases the...
متن کاملPerformance Evaluation of FBP Reconstruction in SPECT Imaging
Introduction: The purpose of this study is to define the optimal parameters for the tomographic reconstruction procedure in a routine single photon emission tomography. The Hoffman brain phantom is modified to evaluate the reconstruction method. The phantom was imaged in a 3 and 2-dimensional conformation and the results were compared. Materials and Methods: The 2D phant...
متن کاملStandardized volumetric 3D-analysis of SPECT/CT imaging in orthopaedics: overcoming the limitations of qualitative 2D analysis
BACKGROUND SPECT/CT combines high resolution anatomical 3D computerized tomography (CT) and single photon emission computerized tomography (SPECT) as functional imaging, which provides 3D information about biological processes into a single imaging modality. The clinical utility of SPECT/CT imaging has been recognized in a variety of medical fields and most recently in orthopaedics; however, cl...
متن کاملDetermination of the optimum filter for qualitative and quantitative 99mTc myocardial SPECT imaging
Background: Butterworth, Gaussian, Hamming, Hanning, and Parzen are commonly used SPECT filters during filtered back-projection (FBP) reconstruction, which greatly affect the quality and size accuracy of image. Materials and Methods: This study involved a cardiac phantom in which 1.10 cm thick cold defect was inserted into its myocardium wall and filled with 4.0 μCi/ml (0.148 MBq/ml) 99mTc conc...
متن کامل